

	
	
		
			Stephen Ball's Technical Blog

			
				Search
			

			
				Primary Menu
				Skip to content
					About Me
	Top Links & Feeds
	Delphi Books
	DelphiABall
	InterBase

	RSS
	Apps
	Hoopcrew
	Basketball Shot Clock
	Go Karting / Racing Pitboard

			
		

		
			
				
				
					Search for:
					
				
				
			
			

		

	

	

	
		
			

	
	
				
			Advanced, FireDAC
		

			Creating PDF Reports in RAD Server

		
			February 5, 2020 Stephen Ball			1 Comment
						

	

		
		Creating PDF Reports in RAD Server

Reporting is a critical aspect of any enterprise application, but the data and the programming components to create reports are not always available on all platforms?

It took a little trial and error to work out the best path to create reports via RADServer using the components out the box. In this post, I will share what I have learned along the way.

Reporting Components

The obvious answer to generating a report that can show on mobile is to create a report PDF report remotely download the PDF to the client over REST. But which version and platforms can be used?

Fast Reports (Embarcadero Edition), which is included in RAD Studio, provides everything we need to create a report and save it out to PDF for export.

Fast Reports – VCL or FMX?

There are two versions of Fast Reports, one for the Visual Component Library (VCL) and one for FireMonkey (FMX). The major differences here are that VCL is Windows only, but also importantly, it has an Exporter component for generating a PDF output.

Even though it is possible to print via an installed printer to PDF via FMX on macOS, it isn’t possible to silently do this without interaction. For this reason, VCL components were the way to go.

Stage 1 – Creating a prototype report

Once decided on the components to use, the next step is to build a sample report, that can then be embedded into the RAD Server module later on.

The approach I decided to take to prototype, was to create a single form VCL application, with a button and Lookup List for the exams, that enabled me to test the report generation with different parameters. This also enabled me to keep everything confined as I would do in the RAD Server resource later.

I won’t cover report creation here, I would, however, recommend Cary Jensons CodeRage X video on Fast Reports if you are new to them.

Stage 2 – Export to PDF

Because the ultimate target here is run inside RAD Server, the next step, once the report is creating, is to ensure it generates the PDF silently.

To do this, we need to add a TFmxPDFExport component to the form. Using this, you can set the Author and Subject, set Protection Flags for the PDF. There are a number of other options to set, including ShowDialogs, OverwritePrompt, OpenAfterExport (All which I set to False) and Background (which I set to true). I’ve not played around much further with these settings, but this worked for me.

With the export settings configured, I used the following code to initiate a test export. Note… this uses a SaveDialog to provide a file name, which will need to be refactored out later for a temp file name. I could have hardcoded a filename, but this enabled better testing and comparison of outputs and enabled simpler testing at this point.

procedure TForm1.Button1Click(Sender: TObject);
var
 LReportStream: TStream;
begin
 // Get a test file name to test against
 if not SaveDialog1.Execute then
 Exit;

 // Select the exam from available list
 ExamTable.Close;
 ExamTable.ParamByName('EXAM_ID').Value := DBLookupListBox1.KeyValue;
 ExamTable.Open();
 LReportStream := TFileStream.Create(SaveDialog1.FileName, fmCreate or fmShareDenyNone);
 try
 frxPDFExport1.Stream := LReportStream;
 // Generate the report
 frxReport1.PrepareReport(True);
 // Export the report
 frxReport1.Export(frxPDFExport1);
 finally
 // free the file stream object
 FreeAndNil(LReportStream);
 frxPDFExport1.Stream := NIL;
 end;
end;

The key point here is setting the Stream property on the export to our TFileStream. This then ensures it creates where we desire.

Stage 3 – Converting silent FastReport into RAD Server REST Resource

At this point, we have a report that creates silently (except for the one dialog we are using for testing). This now needs to be converted into a RAD Server Resource.

In summary, the next steps are to

	Create a RADServer Resource Module,
	Copy over the required components,
	Create a REST entry point for calling the method to export the report
	Finalizing the code

In practice, this means a little more refactoring. Firstly to remove the reliance on the file dialog, and also to set up the resource entry.

Stage 3.1 – Creating the RADS Server Resource Module

Using File > New > Other > {select your language} > RAD Server, select to create a new RAD Server Module. (and create an empty one). I used the ResourceName “Reports” for mine, but you can change this later.

Stage 3.2 – Copying over the components

It’s now time to copy over the components ready for use in the REST call. The first issue you will discover when copying over the Report components from the prototype applications is an Error dialog saying “Class TFrxReport not found.”

This is caused by the TDataModule.ClassGroup defaulting to System.Class.TPersistent. This needs to be changed to VCL.

You can now copy and paste in your database components and report components from the prototype application.

The second issue is that this will not compile! Yes, you read that right! No code, just a few components, and this will not compile!

Because we have introduced VCL components to the package, we need to ensure that the pathing for the BPL’s in VCL are now available. This is an important impact, as (as touched on earlier) this binds the package being created to VCL and Windows only.

To make this compile, open the project options (Project > Options, or Shift + Ctrl + F11). Under “Build > Delphi Compiler > Unit scope names”, add in “VCL”, choose Add and OK

Close the dialog and you should now be able to compile.

Stage 3.3 – Creating the REST resource endpoint

Now is time to create the method and define the REST entry point.

Check you have both ResourceName attribute and ResourceSuffix set in the data module. I wanted to have a resource “reports”

[ResourceName('reports')]
TReportsResource1 = class(TDataModule)

with entry point for the exam passing in the exam_id.

[ResourceSuffix('./exam/{exam_id}')]
procedure GetItem(const AContext: TEndpointContext; const ARequest: TEndpointRequest; const AResponse: TEndpointResponse);

i.e. exposing resource /reports/exam/1/

Stage 3.4 – Finalizing the code to run with the RAD Server parameters

Although in the example of the exams, the ID is expected to be an Integer, any value can be passed in via the REST call. The first part of the code for the method, therefore, traps for a valid ID being passed in. It also raises the exception if something isn’t valid at this point.

procedure TReportsResource1.GetItem(const AContext: TEndpointContext; const ARequest: TEndpointRequest; const AResponse: TEndpointResponse);
var
 LItem: string;
 FN: string;
 fs, LReportStream: TFileStream;
begin
 LItem := ARequest.Params.Values['exam_id'];
 // Ensure we have a valid ID and open exam qry
 ExamTable.Close;
 ExamTable.ParamByName('EXAM_ID').Value := LItem;
 try
 ExamTable.Open();
 except
 on e:Exception do begin
 AResponse.RaiseNotFound('Invalid Exam ID',e.Message);
 end;
 end;

 FN := TPath.GetTempFileName;
 LReportStream := TFileStream.Create(FN, fmCreate or fmShareDenyNone);
 try
 frxPDFExport1.Stream := LReportStream;
 // Generate the report
 frxReport1.PrepareReport(True);
 // Export the report
 frxReport1.Export(frxPDFExport1);
 finally
 // free the file stream object
 FreeAndNil(LReportStream);
 // NIL reference to the stream
 frxPDFExport1.Stream := NIL;
 end;

 fs := TFileStream.Create(FN, fmOpenRead);
 try
 AResponse.Body.SetStream(fs, 'application/pdf', True);
 finally
 end;
end;

The only other change in there is the introduction of the FN variable. (for FileName) This uses TPath to get a Windows Temp file where the report can be generated. Once the file is created, the handle is removed and then the file is read back into a stream for export. Note the fs stream needs to be left to RAD Server to free.

Finally, the AResponse.Body.SetStream method is used to send the PDF back to the calling application.

This should now work on the RAD Server development Server. Hit F9 to try!

Stage 4 – Deployment to Windows IIS Server

While this is now sorted on the dev machine, because it uses run time packages in deployment, we need to ensure the extra packages required are also distributed to our RAD Server instance.

When it comes to deployment, you might also find inspiration in the RAD Server Docker Technical Guide.

There is now an Installer for IIS!

I’m not planning to cover in detail setting up RAD Server in the cloud in this blog. But in short, you can now download an installer to use on Windows or Linux servers via GetIt. (Tools > GetIt Package Manager) – The button Install is a little miss leading as it just downloads it to your local catalog repository. e.g. C:\Users\embt\Documents\Embarcadero\Studio\20.0\CatalogRepository\RADServerInstallerforWindows-1033-1.0

Make sure you have the correct windows features installed on IIS for RAD Server before you run the Installer. Including, Web management Tools, Application Development Features (with ISAPI Extensions and ISAPI Filters) You might also find How-To: Deploy Your RAD Server Project On Windows With IIS by Jim McKeeth useful, however, I think this was written before the installer was released.

Deploying to Windows Server

I mentioned before, RAD Server is a BPL, and as such uses run time packages. While the base install setup includes all the BPL’s required for most RAD Server packages, because we have used Windows-specific components, we need to ensure that the extra packages we required are now deployed alongside our module package which we have created.

This use to be a tricky operation, but now we can do this very easily using PAServer to deploy to the remote machine. This will put all the files required in a folder ready for copying into production.

If you are unsure how to use PAServer on Windows, then please see the linked blog post. The key points.

	Install PAServer on the Windows Server (or your local machine if you need to deploy locally)
	Open with Windows Firewall and add PAServer.exe to the apps allowed access through the firewall.
	Right-click on the 64bit windows Target Platform, and under properties, create a profile pointing to your Server
	Under Project > Deployment choose the Deploy button to send the files to the remote server. (it will ask to compile if it needs to)

Under the PAServer install on the report machine, you will now find a directory with the files sent from RAD Server. You can compare and copy in the BPL files to the RAD Server install folder. For my report, this included

	frx26.bpl
	frxDB26.bpl
	frxe26.bpl
	fs26.bpl
	fsDB26.bpl
	vclimg260.bpl

Once the files are in place, make sure that the RAD Server module (not the other BPL’s) is added to the [Server.Packages] section of the emsserver.ini file: e.g.

[Server.Packages]
;# This section is for extension packages.
;# Extension packages are used to register custom resource endpoints
C:\inetpub\RADServer\radserver\reports.bpl=My Reports Resource Module

If you have any worries, you can test the configuration using the EMSDevServer.exe, once that is working, it should run under IIS.

	

	
	RAD Server
		
		Post navigation

		
			Previous PostCreating and connecting to MSSQL Database on Azure with Delphi / C++BuilderNext PostDelphi is turning 25!			

		
		

	
	
		One thought on “Creating PDF Reports in RAD Server”	

		
		
			
				Pingback: Creating PDF Reports in RAD Server 			

		

		
		
	
		
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment *
Name *

Email *

Website

 Save my name, email, and website in this browser for the next time I comment.

Δ

	

	

		

	

	
		
		Recent Posts

			
					Installing Packages Offline with RAD Studio, Delphi and C++Builder
									
	
					TRESTRequestDataSetAdapter Example
									
	
					Delphi 27th Birthday #Delphi27th
									
	
					How to use Azure Cloud Cognitive Services?
									
	
					How to migrate from old versions of InterBase?
									
	
					Native v Hybrid v WebApp
									
	
					How ISV’s Drive Innovation with InterBase
									
	
					Migration Links from DelphiCon 2020
									

		Tags
	Android
	API
	App Tethering
	asynchronous
	Awards
	Azure
	Beacons
	Bluetooth
	C#
	Castalia
	Change Views
	CodeRage
	Community
	Delphi
	IBConsole
	IBLite
	IDE
	in-app purchase
	Intents
	InterBase
	InterBase Labs
	iOS
	IoT
	LiveBindings
	Mobile
	Objective C
	Parallel Programming
	PA Server
	RAD Server
	Remote Debugging
	REST
	RTTI
	Smart Grids
	SOAP
	SQL
	Swagger UI
	TListView
	Training
	Tutorials
	VCL
	VCL Styles
	XML

Delphi Jobs Board
			

		

		Programming with Delphi & InterBase

	
	
		
					

@DelphiABall

		Categories

				C++

	EMBT

	FireDAC

	General

	IDE

	InterBase

	Level
	Advanced

	Beginner

	Intermediate

	Objective Pascal

						

		Archives

				September 2022
	April 2022
	February 2022
	July 2021
	March 2021
	November 2020
	October 2020
	September 2020
	April 2020
	March 2020
	February 2020
	January 2020
	December 2019
	November 2019
	August 2018
	June 2017
	May 2017
	April 2017
	March 2017
	February 2017
	January 2017
	December 2016
	November 2016
	October 2016
	September 2016
	August 2016
	July 2016
	June 2016
	April 2016
	March 2016
	February 2016
	January 2016
	December 2015
	November 2015
	October 2015
	August 2015
	July 2015
	June 2015
	May 2015
	April 2015
	March 2015
	February 2015
	January 2015
	December 2014
	November 2014
	October 2014
	September 2014
	August 2014
	July 2014
	June 2014
	May 2014
	April 2014
	March 2014

				

	

		

		

			
			
												
					Proudly powered by WordPress				
			

		
	

	This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish.Accept Read More
Privacy & Cookies Policy

	
		
			
			Close
		
		
			
	
		
			
				Privacy Overview
				
					This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.

				

							

		

		
												
						
							
								Necessary							
															
									
									Necessary
								

								Always Enabled
													

						
							
								
									Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.								

							

						

					

																	
						
							
								Non-necessary							
															
									
									Non-necessary
								

													

						
							
								
									Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.								

							

						

					

										

	

		

		
			
				
					
						
						
															SAVE & ACCEPT
													

						
					

				

			

		

	

